

SUCKER ROD PUMPS

Industry recognized certification

Our products are covered by a range of industry recognized certifications and standards, such as API 11AX, ISO 9001:2015/API Q1, ISO 14001:2015 and OHSAS 18001:2007. Quality of our products, confirmed by international certificates, provides for excellent performance of oil wells. We are proud to be part of success story of our customers.

API/STANDARD PUMPS

Table of Contents

RHA Rod Pump stationary, heavy wall barrel, top anchor	2
Description	2
Line-up RHA	3
RHB Rod Pump stationary, heavy wall barrel, bottom anchor	4
Description	4
Line-up RHB	5
RWA Rod Pump stationary, thin wall barrel, top anchor	6
Description	6
Line-up RWA	7
RWB Rod Pump stationary, thin wall barrel, bottom anchor	8
Description	8
Line-up RWB	9
TH Tubing, Heavy wall barrel pump	10
Description	10
Line-up TH	

RHA Rod Pump stationary, heavy wall barrel, top anchor

Description

The CDI RHA pump is a precision, insert rod type with an API B12 heavy wall barrel and either a cup or mechanical top anchor (hold-down). CDI RHA pumps are available in 1-1/4, 1-1/2, 1-3/4 and 2-1/4 inch bore sizes.

The API B12 heavy wall barrel is externally threaded and has an inside diameter tolerance of +0.002/-0.000 inches.

The RHA pump assembly is installed in the well on the end of the sucker rod string and seated in the seating nipple installed in the tubing string at a predetermined depth.

ADVANTAGES OF RHA PUMP

Recommended for sandy wells

> The top anchor (hold-down) eliminates sand settling between the pump barrel and tubing on the hold-down contrasted with a bottom anchor pump which can become sanded in and cause a stripping job.

> The fluid is discharged through the guide approximately 3 inches above the hold-down which limits the amount of sand that can settle over the hold-down.

> The top anchor is even better than a traveling barrel bottom anchor pump, since if a traveling barrel pump is spaced too high, sand can settle on the hold-down around the pull tube right up to the lowest point reached by the pull plug on the downstroke.

Recommended for low fluid level, gassy or foamy wells

> The top anchor pump allows the standing valve to be submerged in the fluid being pumped. This allows the fluid level to be pumped down lower below the seating nipple than with a bottom anchor pump.

 \succ The pump barrel can act as a gas anchor in gassy installations.

Recommended for wells with scale or gyp

> The RHA pump barrel assembly consists of the barrel and extension couplings at each end. Proper selection of pump components to match stroke length will allow the plunger to stroke out both ends of the barrel.

> This eliminates gyp or scale forming in the barrel which could prevent removal of the plunger from the barrel.

Recommended for wells requiring long pumps

> The pump barrel hangs down from the top anchor allowing the barrel to align itself in deviated or horizontal wells.

LIMITATIONS OF RHA PUMP

Not recommended for deep wells

> On the downstroke, the fluid load in the tubing is supported by the standing valve and barrel which puts a tensile load on the barrel. This can cause a tensile failure of the extension threads if the pump is too deep.

> The formation or suction pressure around the outside of the barrel is low whereas the pressure due to the fluid load on the downstroke inside the barrel is high. This can cause the barrel to burst if the pump is too deep.

> Should a fluid pound condition exist, the force of the plunger hitting the fluid will create a sudden high pressure inside the barrel. This can also cause the extensions to fail.

➤ RHA pumps are generally not recommended for depths below 7000 feet. The bore size of the pump, pump barrel material, well conditions and fluid pound, control the setting depth of RHA pumps. These criteria must be considered when determining the setting depth.

Not recommended for intermittent pumping in sandy wells

> When the pump is shut down, sand can settle between the inside of the barrel and the outside of the plunger which could lead to the pump sticking.

> The use of a sand check, located in the guide around the valve rod sitting on top of the hold- down mandrel, will prevent sand from settling into the pump thus eliminating this problem.

> When the pump is shut down, the plunger assembly should be at the top of the upstroke. When the pump is turned on, it is easier for the plunger to fall should there be any sand accumulation. If the plunger assembly was at the bottom of the downstroke, the sand accumulation could cause a sticking problem.

Tubing erosion opposite top guide

> Fluid flow out of the port of the guide can impinge against the tubing and cause erosion and possible tubing leak or failure.

> Guides having multiple ports directed upward will cause fluid flow up the tubing rather than impinging on the tubing I.D.

> A hollow tube pump can be used which eliminates fluid flow out of the stationary guide and allows fluid flow out of the traveling cage/coupling on top of the pull tube through the stroking of the pump.

Part Symbol Component **Tubing Size and Pump Bore (inches)** Description Type 2-3/8 2 - 7/82 - 7/83 - 1/2-G11 1-1/4 1-3/4 2-1/4 1 - 1/2B21 **Traveling Unit** S11 Bushing, Valve B21 B21-20-XXXX B21-25-XXXX B21-25-XXXX B21-30-XXXX S21-R Rod -S21-M R11 R11-25-XXXX R11-25-XXXX R11-30-XXXX R11 Rod, Valve¹ R11-20-XXXX S12 Cage, Open, Top -S21-L C12 C12-125-XXXX C12-150-25-XXXX C12-175-XXXX C12-225-XXXX S13 Plunger Plunger, Pin End S14 P21 P21-125-XXXX P21-150-XXXX P21-175-XXXX P21-225-XXXX 1.2 -S21-B Cage, Closed C13 C13-125-XXXX C13-150-XXXX C13-175-XXXX C13-225-XXXX Plunger S15 C12 Valve, Ball and V11-125-XXXX V11-225-XXXX V11 V11-150-XXXX V11-175-XXXX Seat Optional Plug, Seat P12 P12-150-XXXX Seating P12-125-XXXX P12-175-XXXX P12-225-XXXX C31 Retainer Assembly **Stationary Unit** B12 Guide, Valve Rod G11-20-XXXX G11-25-XXXX G11 G11-25-XXXX G11-30-XXXX Coupling, C31 C31-125-XXXX C31-150-XXXX C31-175-XXXX C31-225-XXXX Extension³ (x2 Barrel, Heavy B12 B12-125-XXXX B12-150-XXXX B12-175-XXXX B12-225-XXXX -C31 Wall¹ Cage, Closed C14-25-XXXX C14 C14-20-XXXX C14-25-XXXX C14-30-XXXX P21-Barrel Valve, Ball and -C14 V11 V11-175-XXXX V11-225-XXXX V11-225-XXXX V11-250-XXXX Seat Bushing, Barrel B22-20-XXXX B22-25-XXXX B22-25-XXXX B22 B22-30-XXXX C13-Cage -V11 Standard Seating Assembly (RHAC Pump) B22 API 3-Cup, Type S10-20-XXXX S10-25-XXXX S10 S10-25-XXXX S10-30-XXXX HR^4 Bushing, Seating S15 S15-20-XXXX S15-25-XXXX S15-25-XXXX S15-30-XXXX Traveling Stationary Cup Unit Unit Seating Nipple (not shown or included in assembly) Nipple, Seating, N11 N11-20-XXXX N11-25-XXXX N11-25-XXXX N11-30-XXXX Cup⁵ **Optional Seating Assembly (RHAM Pump) API** Mechanical S21-20-XXXX S21-25-XXXX S21-25-XXXX S21 S21-30-XXXX Top Lock⁶ Seating Nipple (not shown or included in assembly) Nipple, N14-20-XXXX N14-25-XXXX N14-25-XXXX N14-30-XXXX N14 Seating,Mechanic

1 Add -LL for length in feet for plunger, barrel and valve rod

- 2 Add -FF for fit in thousandths of an inch for plunger
- 3 Add -LL for length in inches for coupling extensions

4 Add -SSS for cup size for 3-cup seating assembly. S10 contains S11, S12, S13, S14

- 5 Add -012 for nipple length
- 6 Add -ASM to part symbol to indicate assembly. ASM
- contains S21-M, S21-R, S21-L, S21-B
- (x2) Component required twice

Notes

- ➢ When a cup hold-down is used, the pump is a type RHAC.
- ➢ When a mechanical hold-down is used, the pump is a type RHAM.
- Alternate parts can be found in the catalog section for each component type.

RHB Rod Pump stationary, heavy wall barrel, bottom anchor

Description

The CDI RHB pump is a precision, insert rod type with an API B12 heavy wall barrel and either a cup or mechanical bottom anchor (hold-down). CDI RHB pumps are available in 1-1/4, 1-1/2, 1-3/4 and 2-1/4 inch bore sizes.

The API B12 heavy wall barrel is externally threaded and has an inside diameter tolerance of +0.002/-0.000 inches.

The RHB pump assembly is installed in the well on the end of the sucker rod string and seated in the seating nipple installed in the tubing string at a predetermined depth.

ADVANTAGES OF RHB PUMP

Recommended for deep wells

> Pressure due to fluid load in the tubing acts on the O.D. of the barrel and the I.D. of the barrel above the plunger.

> This balanced pressure around the barrel overcomes the disadvantages of a top anchor (hold-down) pump; that is, tensile loading on the barrel during downstroke and potential for the barrel to burst due to internal pressure or fluid pound.

Recommended for wells with low fluid level

 \succ Fluid has only to pass through the anchor and standing value to be in the producing chamber of the pump.

Recommended for wells with scale or gyp

> The RHB pump barrel assembly consists of the barrel and extension couplings at each end. Proper selection of pump components to match stroke length will allow the plunger to stroke out both ends of the barrel.

> This eliminates gyp or scale forming in the barrel which could prevent removal of the plunger from the barrel.

LIMITATIONS OF RHB PUMP

Not recommended for sandy wells

Sand can settle on the bottom anchor between the O.D. of the barrel and the I.D. of the tubing. This can cause the pump to be sanded in which could lead to pulling a "wet string" to remove the pump.

> A top seal assembly can be run on top of a bottom anchor pump to eliminate sand settling on the bottom anchor. The top seal assembly is run between the guide and the top of the barrel and seals (or packs off) the annulus between the tubing I.D. and the barrel O.D.

Barrel subject to corrosive attack

➤ Corrosive fluid will be stagnant between the tubing I.D. and the barrel O.D. causing corrosion to attack the outside of the barrel.

> A bottom discharge valve can be installed on the lower end of the barrel. This allows a portion of the produced fluid to be discharged into the annulus between the tubing I.D. and the barrel O.D. This keeps the fluid in motion preventing corrosive attack on the barrel O.D. due to stagnant corrosive fluid. This also aids in keeping sand from settling on the bottom anchor.

Not recommended for intermittent pumping in sandy wells

> When the pump is shut down, sand can settle between the inside of the barrel and the outside of the plunger which could lead to pump sticking.

> The use of a sand check, located in the guide around the valve rod sitting on top of the connector, will prevent sand from settling into the pump thus eliminating this problem.

> When the pump is shut down, the plunger assembly should be at the top of the upstroke. When the pump is turned on, it is easier for the plunger to fall should there be any sand accumulation. If the plunger assembly was at the bottom of the downstroke, the sand accumulation could cause a sticking problem

Tubing erosion opposite top guide

> Fluid flow out of the port of the guide can impinge against the tubing and cause erosion and possible tubing leak or failure.

> Guides having multiple ports directed upward will cause fluid flow up the tubing rather than impinging on the tubing I.D.

> A hollow tube pump can be used which eliminates fluid flow out of the stationary guide and allows fluid flow out of the traveling cage/coupling on top of the pull tube through the stroking of the pump.

API/STANDARD PUMPS

Line-up RHB

			Part Sy	mbol]		
Component	Description	Т	Tubing Size and Pump Bore (inches)					
Туре	Ĩ	2-3/8 1-1/4	2-7/8 1-1/2	2-7/8 1-3/4	3-1/2 2-1/4		G11	
		Trave	ling Unit			B21-		
B21	Bushing, Valve Rod	B21-20-XXXX	B21-25-XXXX	B21-25-XXXX	B21-30-XXXX			
R11	Rod, Valve ¹	R11-20-XXXX	R11-25-XXXX	R11-25-XXXX	R11-30-XXXX	R11	-C21	
C12	Cage, Open, Top Plunger	C12-125-XXXX	C12-150-25-XXXX	C12-175-XXXX	C12-225-XXXX			
P21	Plunger, Pin End 1,2	P21-125-XXXX	P21-150-XXXX	P21-175-XXXX	P21-225-XXXX		C31	
C13	Cage, Closed Plunger	C13-125-XXXX	C13-150-XXXX	C13-175-XXXX	C13-225-XXXX		B12	
V11	Valve, Ball and Seat	V11-125-XXXX	V11-150-XXXX	V11-175-XXXX	V11-225-XXXX	C12		
P12	Plug, Seat Retainer	P12-125-XXXX	P12-150-XXXX	P12-175-XXXX	P12-225-XXXX		C31	
		Station	nary Unit					
G11	Guide, Valve Rod	G11-20-XXXX	G11-25-XXXX	G11-25-XXXX	G11-30-XXXX			
C21	Connector, Barrel	C21-20-XXXX	C21-25-XXXX	C21-25-XXXX	C21-30-XXXX			
C31	Coupling, Extension ³ (x2)	C31-125-XXXX	C31-150-XXXX	C31-175-XXXX	C31-225-XXXX		→ S11	S22-B
B12	Barrel, Heavy Wall ¹	B12-125-XXXX	B12-150-XXXX	B12-175-XXXX	B12-225-XXXX	P21		522-R
C14	Cage, Closed Barrel	C14-20-XXXX	C14-25-XXXX	C14-25-XXXX	C14-30-XXXX		S12	•————————————————————————————————————
V11	Valve, Ball and Seat	V11-175-XXXX	V11-225-XXXX	V11-225-XXXX	V11-250-XXXX	C13-	S13	
	Stand	ard Seating A	ssembly (RHBC	Pump)		V11-		
S10	API 3-Cup, Type HR ⁴	\$10-20-XXXX	S10-25-XXXX	\$10-25-XXXX	\$10-30-XXXX	P12	S16	\equiv D
\$16	Coupling, Seating Cup	\$16-20-XXXX	S16-25-XXXX	\$16-25-XXXX	\$16-30-XXXX	Traveling	Stationary	Optional Seating
	Seating Nipple (not shown or included in assembly)					Unit	Unit	Assembly
N11	Nipple, Seating, Cup ⁵	N11-20-XXXX	N11-25-XXXX	N11-25-XXXX	N11-30-XXXX			
	Optional Seating Assembly (RHBM Pump)							
\$22	API Mechanical BtmLock ⁶	S22-20-XXXX	S22-25-XXXX	\$22-25-XXXX	S22-30-XXXX			
	Seating Ni	pple (not show	vn or included in	assembly)				
N12	Nipple, Seating, Mechanical	N12-20-XXXX	N12-25-XXXX	N12-25-XXXX	N12-30-XXXX			

1 Add -LL for length in feet for plunger, barrel and valve rod

- $2 \qquad {\rm Add} \, \text{-} {\rm FF} \, {\rm for} \, \, {\rm fit} \, {\rm in} \, {\rm thousand ths} \, {\rm of} \, {\rm an} \, {\rm inch} \, {\rm for} \, \, {\rm plunger}$
- 3 Add -LL for length in inches for coupling extensions

4~ Add -SSS for cup size for 3-cup seating assembly. S10 contains S11, S12, S13, S14 $\,$

- 5 Add -012 for nipple length
- 6 Add -ASM to part symbol to indicate assembly. ASM
- contains S22-R, S22-M, S22-B
- (x2) Component required twice

Notes

- ➤ When a cup hold-down is used, the pump is a type RHBC.
- ➢ When a mechanical hold-down is used, the pump is a type RHBM.

 \succ Alternate parts can be found in the catalog section for each component type.

RWA Rod Pump stationary, thin wall barrel, top anchor

Description

The CDI RHA pump is a precision, insert rod type with an API B11 thin wall barrel and either a cup or mechanical top anchor (hold-down). CDI RWA pumps are available in 1-1/2, 2 and 2-1/2 inch bore sizes.

The API B11 thin wall barrel is internally threaded and has an inside diameter tolerance of +0.002/-0.000 inches.

The RWA pump assembly is installed in the well on the end of the sucker rod string and seated in the seating nipple installed in the tubing string at a predetermined depth.

ADVANTAGES OF RHA PUMP

Recommended for sandy wells

> The top anchor (hold-down) eliminates sand settling between the pump barrel and tubing on the hold-down contrasted with a bottom anchor pump which can become sanded in and cause a stripping job.

> The fluid is discharged through the guide approximately 3 inches above the hold-down which limits the amount of sand that can settle over the hold-down.

> The top anchor is even better than a traveling barrel bottom anchor pump, since if a traveling barrel pump is spaced too high, sand can settle on the hold-down around the pull tube right up to the lowest point reached by the pull plug on the downstroke.

Recommended for low fluid level, gassy or foamy wells

> The top anchor pump allows the standing valve to be submerged in the fluid being pumped. This allows the fluid level to be pumped down lower below the seating nipple than with a bottom anchor pump.

 \succ The pump barrel can act as a gas anchor in gassy installations.

Recommended for wells requiring long pumps

> The pump barrel hangs down from the top anchor allowing the barrel to align itself in deviated or horizontal wells.

LIMITATIONS OF RHA PUMP

Not recommended for deep wells

> On the downstroke, the fluid load in the tubing is supported by the standing valve and barrel which puts a tensile load on the barrel. This can cause a tensile failure of the extension threads if the pump is too deep.

> The formation or suction pressure around the outside of the barrel is low whereas the pressure due to the fluid load on the downstroke inside the barrel is high. This can cause the barrel to burst if the pump is too deep.

> Should a fluid pound condition exist, the force of the plunger hitting the fluid will create a sudden high pressure inside the barrel. This can also cause the extensions to fail.

➤ RWA pumps are generally not recommended for depths below 5000 feet. The bore size of the pump, pump barrel material, well conditions and fluid pound, control the setting depth of RWA pumps. These criteria must be considered when determining the setting depth.

Not recommended for intermittent pumping in sandy wells

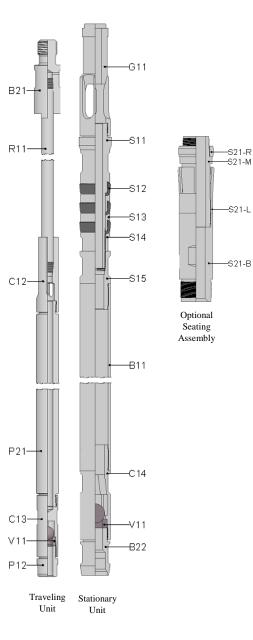
> When the pump is shut down, sand can settle between the inside of the barrel and the outside of the plunger which could lead to the pump sticking.

> The use of a sand check, located in the guide around the valve rod sitting on top of the hold- down mandrel, will prevent sand from settling into the pump thus eliminating this problem.

> When the pump is shut down, the plunger assembly should be at the top of the upstroke. When the pump is turned on, it is easier for the plunger to fall should there be any sand accumulation. If the plunger assembly was at the bottom of the downstroke, the sand accumulation could cause a sticking problem.

Tubing erosion opposite top guide

> Fluid flow out of the port of the guide can impinge against the tubing and cause erosion and possible tubing leak or failure.


> Guides having multiple ports directed upward will cause fluid flow up the tubing rather than impinging on the tubing I.D.

> A hollow tube pump can be used which eliminates fluid flow out of the stationary guide and allows fluid flow out of the traveling cage/coupling on top of the pull tube through the stroking of the pump.

API/STANDARD PUMPS

		Part Symbol					
Component	Description	Tubing Size and Pump Bore (inches)					
Туре		2-3/8 1-1/2	2-7/8 2	3-1/2 2-1/2			
		Traveling Unit					
B21	Bushing, Valve Rod	B21-20-XXXX	B21-25-XXXX	B21-30-XXXX			
R11	Rod, Valve ¹	R11-20-XXXX	R11-25-XXXX	R11-30-XXXX			
C12	Cage, Open, Top Plunger	C12-150-20-XXXX	C12-200-XXXX	C12-250-XXXX			
P21	Plunger, Pin End ^{1,2}	P21-150-XXXX	P21-200-XXXX	P21-250-XXXX			
C13	Cage, Closed Plunger	C13-150-XXXX	C13-200-XXXX	C13-250-XXXX			
V11	Valve, Ball and Seat	V11-150-XXXX	V11-200-XXXX	V11-250-XXXX			
P12	Plug, Seat Retainer	P12-150-XXXX	P12-200-XXXX	P12-250-XXXX			
	Stationary Unit						
G11	Guide, Valve Rod	G11-20-XXXX	G11-25-XXXX	G11-30-XXXX			
B11	Barrel, Thin Wall ¹	B11-150-XXXX	B11-200-XXXX	B11-250-XXXX			
C14	Cage, Closed Barrel	C14-20-XXXX	C14-25-XXXX	C14-30-XXXX			
V11	Valve, Ball and Seat	V11-175-XXXX	V11-225-XXXX	V11-250-XXXX			
B22	Bushing, Barrel Cage	B22-20-XXXX	B22-25-XXXX	B22-30-XXXX			
	Standard Se	eating Assembly (l	RWAC Pump)				
\$10	API 3-Cup, Type HR ³	\$10-20-XXXX	S10-25-XXXX	\$10-30-XXXX			
\$15	Bushing, Seating Cup	\$15-20-XXXX	S15-25-XXXX	\$15-30-XXXX			
	Seating Nipple (not shown or inclu	uded in assembl	y)			
N11	Nipple, Seating, Cup ⁴	N11-20-XXXX	N11-25-XXXX	N11-30-XXXX			
	-	ating Assembly (F	RWAM Pump)				
S21	API Mechanical Top Lock ⁵	S21-20-XXXX	S21-25-XXXX	S21-30-XXXX			
	Seating Nipple (not shown or inclu	uded in assembl	y)			
N14	Nipple, Seating,Mechanical	N14-20-XXXX	N14-25-XXXX	N14-30-XXXX			

1 Add -LL for length in feet for plunger, barrel and valve rod

 $2 \quad \mbox{Add}$ -FF for fit in thousandths of an inch for plunger

3 Add -SSS for cup size for 3-cup seating assembly. S10 contains S11, S12, S13, S14

4 Add -012 for nipple length

5 Add -ASM to part symbol to indicate assembly. ASM contains S21-M, S21-R, S21-L, S21-B Notes

- When a cup hold-down is used, the pump is a type RWAC.
- ➤ When a mechanical hold-down is used, the pump is a type RWAM.

> Alternate parts can be found in the catalog section for each component type.

RWB Rod Pump stationary, thin wall barrel, bottom anchor

Description

The CDI RWB pump is a precision, insert rod type with an API B11 thin wall barrel and either a cup or mechanical bottom anchor (hold-down). CDI RWB pumps are available in 1-1/2, 2 and 2-1/2 inch bore sizes.

The API B11 thin wall barrel is internally threaded and has an inside diameter tolerance of +0.002/-0.000 inches.

The RWB pump assembly is installed in the well on the end of the sucker rod string and seated in the seating nipple installed in the tubing string at a predetermined depth.

ADVANTAGES OF RHB PUMP

Recommended for deep wells

> Pressure due to fluid load in the tubing acts on the O.D. of the barrel and the I.D. of the barrel above the plunger.

> This balanced pressure around the barrel overcomes the disadvantages of a top anchor (hold-down) pump; that is, tensile loading on the barrel during downstroke and potential for the barrel to burst due to internal pressure or fluid pound.

Recommended for wells with low fluid level

 \succ Fluid has only to pass through the anchor and standing valve to be in the producing chamber of the pump.

LIMITATIONS OF RHB PUMP

Not recommended for sandy wells

Sand can settle on the bottom anchor between the O.D. of the barrel and the I.D. of the tubing. This can cause the pump to be sanded in which could lead to pulling a "wet string" to remove the pump.

> A top seal assembly can be run on top of a bottom anchor pump to eliminate sand settling on the bottom anchor. The top seal assembly is run between the guide and the top of the barrel and seals (or packs off) the annulus between the tubing I.D. and the barrel O.D.

Barrel subject to corrosive attack

➤ Corrosive fluid will be stagnant between the tubing I.D. and the barrel O.D. causing corrosion to attack the outside of the barrel.

> A bottom discharge valve can be installed on the lower end of the barrel. This allows a portion of the produced fluid to be discharged into the annulus between the tubing I.D. and the barrel O.D. This keeps the fluid in motion preventing corrosive attack on the barrel O.D. due to stagnant corrosive fluid. This also aids in keeping sand from settling on the bottom anchor.

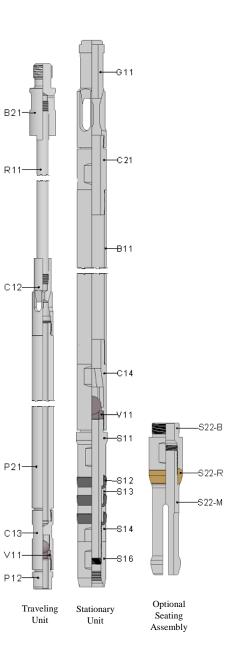
Not recommended for intermittent pumping in sandy wells

> When the pump is shut down, sand can settle between the inside of the barrel and the outside of the plunger which could lead to pump sticking.

> The use of a sand check, located in the guide around the valve rod sitting on top of the connector, will prevent sand from settling into the pump thus eliminating this problem.

> When the pump is shut down, the plunger assembly should be at the top of the upstroke. When the pump is turned on, it is easier for the plunger to fall should there be any sand accumulation. If the plunger assembly was at the bottom of the downstroke, the sand accumulation could cause a sticking problem

Tubing erosion opposite top guide


> Fluid flow out of the port of the guide can impinge against the tubing and cause erosion and possible tubing leak or failure.

> Guides having multiple ports directed upward will cause fluid flow up the tubing rather than impinging on the tubing I.D.

> A hollow tube pump can be used which eliminates fluid flow out of the stationary guide and allows fluid flow out of the traveling cage/coupling on top of the pull tube through the stroking of the pump.

	Part Symbol							
Component	Description	Tubing Size and Pump Bore (inches)						
Туре	-	2-3/8 1-1/2	2-7/8 2	3-1/2 2-1/2				
	Traveling Unit							
B21	Bushing, Valve Rod	B21-20-XXXX	B21-25-XXXX	B21-30-XXXX				
R11	Rod, Valve ¹	R11-20-XXXX	R11-25-XXXX	R11-30-XXXX				
C12	Cage, Open, Top Plunger	C12-150-20-XXXX	C12-200-XXXX	C12-250-XXXX				
P21	Plunger, Pin End ^{1,2}	P21-150-XXXX	P21-200-XXXX	P21-250-XXXX				
C13	Cage, Closed Plunger	C13-150-XXXX	C13-200-XXXX	C13-250-XXXX				
V11	Valve, Ball and Seat	V11-150-XXXX	V11-200-XXXX	V11-250-XXXX				
P12	Plug, Seat Retainer	P12-150-XXXX	P12-200-XXXX	P12-250-XXXX				
		Stationary Unit						
G11	Guide, Valve Rod	G11-20-XXXX	G11-25-XXXX	G11-30-XXXX				
B11	Barrel, Thin Wall ¹	B11-150-XXXX	B11-200-XXXX	B11-250-XXXX				
C21	Connector, Barrel	C21-20-XXXX	C21-25-XXXX	C21-30-XXXX				
C14	Cage, Closed Barrel	C14-20-XXXX	C14-25-XXXX	C14-30-XXXX				
V11	Valve, Ball and Seat	V11-175-XXXX	V11-225-XXXX	V11-250-XXXX				
	Standard S	eating Assembly (I	RWBC Pump)					
\$10	API 3-Cup, Type HR ³	\$10-20-XXXX	S10-25-XXXX	S10-30-XXXX				
\$16	Coupling, Seating Cup	\$16-20-XXXX	S16-25-XXXX	S16-30-XXXX				
	Seating Nipple (not shown or inclu	uded in assembl	y)				
N11	Nipple, Seating, Cup ⁴	N11-20-XXXX	N11-25-XXXX	N11-30-XXXX				
	Optional Se	eating Assembly (F	RWBM Pump)					
\$22	API Mechanical Btm Lock ⁵	S22-20-XXXX	S22-25-XXXX	S22-30-XXXX				
	Seating Nipple (not shown or inclu	uded in assembl	y)				
N12	Nipple, Seating,Mechanical	N12-20-XXXX	N12-25-XXXX	N12-30-XXXX				

1 Add -LL for length in feet for plunger, barrel and valve rod

2 Add -FF for fit in thousandths of an inch for plunger

3 Add -SSS for cup size for 3-cup seating assembly. S10 contains S11, S12, S13, S14

4 Add -012 for nipple length

5 Add -ASM to part symbol to indicate assembly. ASM contains S22-R, S22-M, S22-B

Notes

- ➢ When a cup hold-down is used, the pump is a type RWBC.
- > When a mechanical hold-down is used, the pump is a type RWBM.

> Alternate parts can be found in the catalog section for each component type.

TH Tubing, Heavy wall barrel pump

Description

The CDI TH pump is built to move the maximum amount of fluid. It is a precision tubing type with an API B13 heavy wall barrel and either a cup or mechanical seating assembly on the retrievable standing valve assembly. Either a "tap type" or "sure hold" puller on the bottom of the plunger assembly is used to retrieve the standing valve assembly.

CDI TH pumps are available in 1-3/4, 2-1/4, 2-3/4 and 3-3/4 inch bore sizes.

The API B13 heavy wall barrel is externally threaded and has an inside diameter tolerance of +0.002 / -0.000 inches.

The barrel assembly, including the seating nipple, is a part of the tubing string and run with the tubing. The plunger assembly, including the standing valve unit, is run in the well on the end of the sucker rod string. If the standing valve unit is not run in with the plunger assembly by means of the puller, then it can be seated in the seating nipple and run with the barrel assembly.

ADVANTAGES OF TH PUMP

Large capacity

> The TH pump has the largest bore size in any given size tubing.

> The bore size is just 0.250 inches smaller than the normal tubing I.D.

> It produces a greater volume of fluid than insert rod pumps due to the large bore size.

> Large fluid flow areas through the standing and travelling valves make the TH pump good for producing heavy, viscous fluid.

Strong construction

> The heavy wall barrel connects directly to the tubing string.

> The sucker rod string connects directly to the top plunger cage of the plunger assembly.

LIMITATIONS OF TH PUMP

Pull tubing to replace barrel

Since the TH barrel is installed in the tubing string, the only way to replace the barrel is to pull the tubing.

> Selection of the best barrel for an installation is very important as it may save a tubing job.

Not recommended for gassy wells

> Gas compression ratios very low in TH pumps due to unswept volume at the bottom of the stroke.

> Length of standing valve assembly, the puller on the bottom of the plunger assembly and the I.D. of the extension nipple contribute to large unswept volume at the bottom of the pump.

> This unswept volume can be reduced by eliminating the extension nipple at the bottom of the pump and connecting the barrel directly to the seating nipple with the barrel coupling.

Not recommended for deep wells

> Large bore increases fluid load on the sucker rod string.

> Increased fluid load will increase stroke loss due to rod and tubing stretch. As the pump is set deeper this stroke loss may result in lower production than could be obtained with an insert rod pump.

> Generally, TH pumps are not recommended for depths below 5000 feet.

Line-up TH

API/STANDARD PUMPS

C34Part Symbol Component C11 **Tubing Size and Pump Bore (inches)** Description Type V11 2 - 3/82 - 7/83 - 1/24 - 1/21-3/4 2-3/4 3-3/4 -N21 2 - 1/4P21 **Traveling Unit** C11-20-XXXX C11-25-XXXX C11-30-XXXX C11 Cage, Open top C11-40-XXXX V11 Valve, Ball and Seat (x2) V11-175-XXXX V11-225-XXXX V11-250-XXXX V11-375-XXXX C13 Plunger, One Piece^{1,2} P21-175-XXXX P21 P21-225-XXXX P21-275-XXXX P21-375-XXXX C35 V11 C13 Cage, Closed Plunger C13-175-XXXX C13-225-XXXX C13-275-XXXX C13-375-XXXX Puller, Standing Valve, B13 P31 P31-375-XXXX⁶ P31-175-XXXX P31-225-XXXX P31-275-XXXX P31 Тар Туре **Stationary Unit** C34 Coupling, Tubing (x2) C34-20-XXXX C34-25-XXXX C34-30-XXXX C34-40-XXXX C35 N21 Nipple, Extension Upper⁴ N21-20-XXXX N21-25-XXXX N21-30-XXXX N21-40-XXXX Traveling Unit C35 Coupling, Barrel (x2) C35-20-XXXX C35-25-XXXX C35-30-XXXX C35-40-XXXX B13-175-XXXX B13-225-XXXX B13-275-XXXX B13-375-XXXX B13 Barrel, Heavy Wall¹ -N22 N22-20-XXXX N22-25-XXXX N22 Nipple, Extension Lower⁴ N22-30-XXXX N22-40-XXXX Cup Type, Seating Assembly (THC Pump) C34 C16-175-XXXX C16-225-XXXX C16-275-XXXX C16 Cage, Standing Valve C16-375-XXXX V11 Valve, Ball and Seat V11-175-XXXX V11-225-XXXX V11-250-XXXX V11-375-XXXX S10 API 2-Cup, Type HR³ S10T20-XXXX S10T25-XXXX S10T30-XXXX -N13 S16 Coupling, Seating Cup S16-20-XXXX S16-25-XXXX S16-30-XXXX Stationary Cup Type, Seating Nipple Unit N13 Nipple, Seating, Cup N13-20-XXXX N13-25-XXXX N13-30-XXXX C1P Mechanical type, Seating Assembly (THM Pump) \$22 API Mechanical Btm Lock5 S22-40-XXXX -S22-B Mechanical type, Seating Nipple (not shown) S17 N12 Nipple, Seating, Mechanical N12-40-XXXX -S22-R S18 S22-M Notes Add -LL for length in feet for plunger, barrel 1 513 Add -FF for fit in thousandths of an inch for 2 > When a cup hold-down is used, the pump is a type plunger THC S14-Add -SSS for cup size for 2-cup seating 3 When a mechanical hold-down is used, the pump is

When a mechanical hold-down is used, the pump a type THM.

 \succ Alternate parts can be found in the catalog section for each component type.

> XXXX indicates material designator. See pump parts section.

S16-

Cup Type,

Seating

Assembly

Mech. Type, Seating Assembly

3 Add -SSS for cup size for 2-cup seating assembly. S10T contains S17, S18, S13, S14

4 Add -LL for length in inches for nipple extensions
5 Add -ASM to part symbol to indicate assembly. ASM contains S22-R, S22-M, S22-B

6 P31-275 can be used instead by using optional B23-40 crossover bushing

© 2017 CDI OILFILED SERVICES. All rights reserved.

SPECIALTY PUMPS

Table of Contents

MHT- McGiver Pump	2
Description	2
Line-up MHT	3
SWAF, Circle A Pump, Top Anchor	4
Description	4
Line-up SWAF	5
JHA Capture Chamber Pump, Top Anchor	6
Description	6
Line-up JHA	7
JHB Capture Chamber Pump, Bottom Anchor	8
Description	8
Line-up JHB	9

MHT- McGiver Pump

Description

The CDI MHT-McGiver pump is a travelling-barrel pump designed for use in wells where abrasive and gaseous fluids are produced. The McGiver utilizes a shorter, traveling, heavy wall barrel and a barrel jacket.

MHT pumps are available in 1-1/4, 1-1/2 and 1-3/4 inch bore sizes.

The CDI MHT-McGiver pump assembly is installed in the well on the end of the sucker rod string and seated in the seating nipple installed in the tubing string at a predetermined depth.

This pump is available in both Hold down type: API cups or API mechanical.

ADVANTAGES OF MHT PUMP

> The pump prevents sand or foreign material from settling on top or around the plunger and sticking it in the barrel because has a long smooth plunger that extends through a short barrel. Due to the length of the plunger, the ends do not enter in barrel section at either the top or bottom of the stroke. The plunger is wiped clean on each stroke, and foreign material (sand) is not carried into the barrel.

> The traveling valve is located at the top of the traveling assembly. This acts as a check valve, and keeps foreign material from entering the pump, and when the pumping cycle is in "shut down" mode.

> The McGiver utilizes a lower standing valve or "Foot Valve", installed between the hold down and plunger. This design maintains fluid loading in the plunger. This minimizes the distance the fluid must travel from the wellbore into the pump.

 \succ The pump uses a long plunger which gives a stronger construction for standing assembly.

> Pressure due to fluid load in the tubing acts on the O.D. of the barrel. This balanced pressure around the barrel overcomes the disadvantages of a top anchor pump.

> To prevent premature failure of the barrel assembly, which will loose material by friction with tubing, shorter jackets have been used together with special wear resistant coupling.

LIMITATIONS OF MHT PUMP

> Even though the design does not promote good compression ratios, this disadvantage is compensated for with the "ball knocker" or "ball lifting" device. This device physically lifts the traveling valve ball off the seat, at the bottom of the "down stroke", allowing compressed gas to escape up the production tubing.

					R 12
			Part Symbol		
Component Type Description		Tubing Size and Pump Bore (inches)			
Type		2-7/8 1-1/4	2-7/8 1-1/2	3-1/2 1-3/4	V11
		Traveling U	nit		C21
C11M	Cage, Top Open	C11M25-XXXX	C11M25-XXXX	C11M30-XXXX	
V11	Valve, Ball and Seat	V11-225-XXXX	V11-225-XXXX	V11-250-XXXX	
C21	Connector, Barrel	C21-25-XXXX	C21-25-XXXX	NACE OF A 115 WWWW	
CE	Coupling, Extension ³	C31-150-XXXX	C31-175-XXX	M65-C54-115-XXXX	
TJ	Tube, Jacket (x2 or x3), 4 ft	TJ-150-XXXX	TJ-175-XXX	TJ-225-XXXX	
CG	Coupling, Guide (x1 or x2)	CG-150-XXXX	CG-175-XXXX	CG-225-XXXX	
СВ	Coupling, RH Barrel	M47-M39-101-XXXX	C31-150-XXXX	M65-M53-101-XXXX	
B12	Barrel, Heavy Wall, 4 ft	B12-125	B12-150	B12-175	
PP	Plug, Pull, Box	M39-50	M46-65	M53-80	
		Stationary U	nit		CB
R12	Bar, Round, One End Threaded	R12-20-XXXX	R12-25-XXXX	R12-25-XXXX	-S13
СР	Cage Open, Top Plunger, 4PC Cge	C31-M15-127-XXXX	C46-175-XXXX	C46-225-XXXX	B12
C40A	Body, 4PC Cage	C40A150-XXXX	C40A175-XXXX	C40A225-XXXX	
V11	Valve, Ball and Seat	V11-150-XXXX	V11-175-XXXX	V11-225-XXXX	PP
CC	Connector, Cage to BE Plunger	C31-C25-63-XXXX	C37-C31-80-XXXX	C46-C38-85-XXXX	Traveling Stationary Unit Unit
P23	Plunger, Box End ^{1,2}	P23-125-XXXX	P23-150-XXXX	P23-175-XXXX	
CR	Conn, 4PC Clsd Cge, BE Plg	C45-C25-70-XXXX	C45-C31-85-XXXX	C57-C38-100-XXXX	1 Add -LL for length in feet for plunger,
C40A	Body, 4PC Cage	C40A225-XXXX	C40A225-XXXX	C40A250-XXXX	 Add -LL for length in feet for plunger, Add -FF for fit in thousandths of an inch plunger
V11	Valve, Ball and Seat	V11-225-XXXX	V11-225-XXXX	V11-250-XXXX	3 Length of coupling extension shall established based on pump length;
	Standa	rd Seating Assembly	y (MHTC Pump)		4 Add -SSS for cup size for 3-cup seating assem
\$10	API 3-Cup, Type HR ⁴	S10-25-XXXX	S10-25-XXXX	\$10-30-XXXX	 S10 contains S11, S12, S13, S14 Add -012 for nipple length
\$16	Coupling, Seating Cup	S16-25-XXXX	\$16-25-XXXX	S16-30-XXXX	6 Add ASM to part symbol to indicate assem ASM contains S22-M, S22-R, S22-B
	Seating Ni	ople (not shown or i	ncluded in assemb	ly)	Notes
N11	Nipple, Seating, Cup ⁵	N11-25-XXXX	N11-25-XXXX	N11-30-XXXX	When a cup hold-down is used, the pump is type MHTC.
		al Seating Assembly	(MHTM Pump)		When a mechanical hold-down is used, pump is a type MHTM.
S22	API Mechanical BtmLock ⁶	S22-25-XXXX	S22-25-XXXX	S22-30-XXXX	 Alternate parts can be found in the cata section for each component type. XXXX indicates metarial designator
	Seating Nip	ople (not shown or i	cluded in assemb	ly)	 XXXX indicates material designator. S pump parts section.
N12	Nipple, Seating, Mechanical	N12-25-XXXX	N12-25-XXXX	N12-30-XXXX	C40A is a 4pc cage assembly. See speci pump parts section.

© 2017 CDI OILFILED SERVICES. All rights reserved.

SWAF, Circle A Pump, Top Anchor

Description

The CDI SWAF pump is a precision, insert rod type with an API B11 thin wall barrel and a friction ring top hold-down.

CDI SWAF pumps are available in 2, and 2-1/2 inch bore sizes.

The API B11 thin wall barrel is internally threaded and has an inside diameter tolerance of +0.002/-0.000 inches.

The SWAF pump assembly is installed in the well on the end of the sucker rod string and seated in the seating nipple installed in the tubing string at a predetermined depth.

The Circle A pump was designed for maximum flow, minimum turbulence and maximum efficiency. Close spacing of the travelling and standing valves allows maximum filling of the pump chamber and maintains a minimum dead volume between the valves. Circle A Pumps are held in place by a unique friction ring hold-down. The friction ring hold-down is short, has maximum flow area and is simple in construction. The force needed to seat the friction ring is determined by the well depth and weight of the sucker rod string.

ADVANTAGES OF SWAF PUMP

Recommended for sandy wells

> The top anchor (hold-down) eliminates sand settling between the pump barrel and tubing on the hold-down contrasted with a bottom anchor pump which can become sanded in and cause a stripping job.

Recommended for wells with low fluid level

 \succ Fluid has only to pass through the anchor and standing valve to be in the producing chamber of the pump.

Recommended for low fluid level, gassy or foamy wells → The top anchor pump allows the standing valve to be submerged in the fluid being pumped. This allows the fluid level to be pumped down lower below the seating nipple than with a bottom anchor pump.

 \succ The pump barrel can act as a gas anchor in gassy installations.

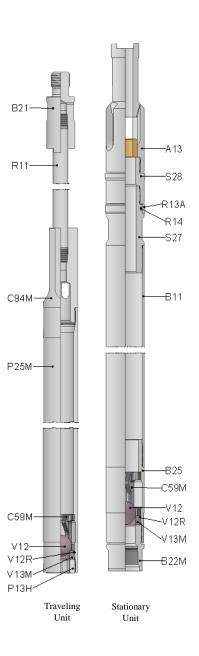
Recommended for wells requiring long pumps

> The pump barrel hangs down from the top anchor allowing the barrel to align itself in deviated or horizontal wells.

Recommended for wells with abnormal temperatures

> Using friction ring hold down instead of cups the pump can perform in wells where the temperature is higher than in normal conditions.

LIMITATIONS OF SWAF PUMP


Valve rod is weak link

 \succ The valve rod is connected to the top plunger bushing and valve rod bushing with modified line pipe threads. The valve rod with modified line pipe threads is not as strong as the sucker rods. Normal pumping action can cause flexing at the valve rod connections leading to fatigue failure.

		Part Symbol							
Component	Description	Tubing Size and Pump Bore (inches)							
Туре	-	2-7/8 2	3-1/2 2-1/2						
	Traveling Unit								
B21	Bushing, Valve Rod	B21-25-XXXX	B21-30-XXXX						
R11	Rod, Valve ¹	R11-25-XXXX	R11-30-XXXX						
C94M	Cage, TPA, Be Plunger	C94M200-XXXX	C94M250-XXXX						
P25M	Plunger, One Piece, Box End ^{1,2}	P25M200-XXXX	P25M250-XXXX						
C59M	Cage, Modified Insert Type Guide	C59M200-XXXX	C59M250-XXXX						
V12	Valve, Ball	V12-200-XXXX	V12-250-XXXX						
V12R	Valve, Seat O-ring	V12R200-XXXX	V12R250-XXXX						
V13M	Valve, Seat O-ring Prep	V13M200-XXXX	V13M250-XXXX						
P13H	Hex Plug seat	P13H200-XXXX	P13H250-XXXX						
	Stati	onary Unit	•						
A13	Sand Check	A13-200-XXXX	A13-250-XXXX						
S28	Bushing, Top Hldn W/Friction Ring	S28-25-XXXX	S28-30-XXXX						
R13A	Friction Ring ³	R13A25-XXXX	R13A30-XXXX						
R14	Friction Ring, O-ring	R14-25-XXXX	R14-30-XXXX						
S27	Connector, Brl to Top Hldn w/Friction Ring	\$27-25-XXXX	\$27-30-XXXX						
B11	Barrel, Thin Wall ¹	B11-200-XXXX	B11-250-XXXX						
B25	Cage Closed, Insert Prep	B25-25-XXXX	B25-30-XXXX						
C59M	Cage, Modified Insert Type Guide	C59M225-XXX	C59M325-XXXX						
V12	Valve, Ball	V12-225-XXXX	V12-325-XXXX						
V12R	Valve, Seat O-ring	V12R225-XXXX	V12R325-XXXX						
V13M	Valve, Seat O-ring prep	V13M225-XXXX	V13M325-XXXX						
B22M	Bushing, Barrel Cage	B22M25-XXXX	B22M30-XXXX						
5	Seating Nipple (not sho	own or included in as	sembly)						
N16	Seating Nipple, Friction Ring Top Hold-down	N16-25-XXXX	N16-30-XXXX						

1 Add -LL for length in feet for plunger, barrel and valve rod

2 Add -FF for fit in thousandths of an inch for plunger

3 Add 3 digits suffix to friction ring for holding force

Notes

 \succ Alternate parts can be found in the catalog section for each component type.

> XXXX indicates material designator. See pump parts section.

 \succ For friction ring holding force see pump part section.

JHA Capture Chamber Pump, Top Anchor

Description

The CDI JHA pump is a precision, insert rod type with an API B12 heavy wall barrel and either a cup or mechanical top anchor (hold-down).

CDI JHA pumps are available in 1-1/4, 1-1/2, 1-3/4 and 2-1/4 inch bore sizes.

The API B12 heavy wall barrel is externally threaded and has an inside diameter tolerance of +0.002/-0.000 inches.

The JHA pump assembly is installed in the well on the end of the sucker rod string and seated in the seating nipple installed in the tubing string at a predetermined depth.

Pump designed to increase the pumping efficiency in high gas - liquid ratio (GLR) wells, eliminating the gas lock and fluid pound. Each stroke, a small amount of fluid is transferred from tubing in the compression chamber of the pump. The same time, an equivalent volume of free gas escapes in the tubing. A proper spacing between the traveling and standing valves maximizes the compression ratio and allows the fluid transfer on each stroke.

ADVANTAGES OF JHA PUMP

Recommended for sandy wells

> The top anchor (hold-down) eliminates sand settling between the pump barrel and tubing on the hold-down contrasted with a bottom anchor pump which can become sanded in and cause a stripping job.

> The fluid is discharged through the guide approximately 3 inches above the hold-down which limits the amount of sand that can settle over the hold-down.

> The top anchor is even better than a traveling barrel bottom anchor pump, since if a traveling barrel pump is spaced too high, sand can settle on the hold-down around the pull tube right up to the lowest point reached by the pull plug on the downstroke.

Recommended for low fluid level, gassy or foamy wells

> The top anchor pump allows the standing valve to be submerged in the fluid being pumped. This allows the fluid level to be pumped down lower below the seating nipple than with a bottom anchor pump.

> The pump barrel can act as a gas anchor in gassy installations.

> The capture chamber and the holes in plunger allows an amount of produced fluid to drain in on top of the standing valve. This allows the pump to build enough pressure to overcome hydrostatic tubing pressure on the downstroke, preventing a gas lock situation.

Recommended for wells with scale or gyp

> The JHA pump barrel assembly consists of two barrels which are connected with an extension coupling (capture chamber) and an upper extension coupling. The plunger will stroke out both ends of the barrels.

> This eliminates gyp or scale forming in the barrel which could prevent removal of the plunger from the barrel.

Recommended for wells requiring long pumps

> The pump barrel hangs down from the top anchor allowing the barrel to align itself in deviated or horizontal wells.

LIMITATIONS OF JHA PUMP

Not recommended for deep wells

> On the downstroke, the fluid load in the tubing is supported by the standing valve and barrel which puts a tensile load on the barrel. This can cause a tensile failure of the extension threads if the pump is too deep.

> The formation or suction pressure around the outside of the barrel is low whereas the pressure due to the fluid load on the downstroke inside the barrel is high. This can cause the barrel to burst if the pump is too deep.

> Should a fluid pound condition exist, the force of the plunger hitting the fluid will create a sudden high pressure inside the barrel. This can also cause the extensions to fail.

> JHA pumps are generally not recommended for depths below 7000 feet. The bore size of the pump, pump barrel material, well conditions and fluid pound, control the setting depth of JHA pumps. These criteria must be considered when determining the setting depth.

Not recommended for intermittent pumping in sandy wells

➤ When the pump is shut down, sand can settle between the inside of the barrel and the outside of the plunger which could lead to the pump sticking.

> When the pump is shut down, the plunger assembly should be at the top of the upstroke. When the pump is turned on, it is easier for the plunger to fall should there be any sand accumulation. If the plunger assembly was at the bottom of the downstroke, the sand accumulation could cause a sticking problem.

Tubing erosion opposite top guide

> Fluid flow out of the port of the guide can impinge against the tubing and cause erosion and possible tubing leak or failure.

➤ Guides having multiple ports directed upward will cause fluid flow up the tubing rather than impinging on the tubing I.D.

SPECIALTY PUMPS

			Part Sy	ymbol			- Th
Component	- Description						
Туре	r r r	2-3/8 1-1/4	2-7/8 1-1/2	2-7/8 1-3/4	3-1/2 2-1/4		A13
			S 11				
B21	Bushing, Valve Rod	B21-20-XXXX	B21-25-XXXX	B21-25-XXXX	B21-30-XXXX		S 12
R11	Rod, Valve ¹	R11-20-XXXX	R11-25-XXXX	R11-25-XXXX	R11-30-XXXX	R11	513
C94	Cage, Open, TPA, W/out Seat Prep	C12-125-XXXX	C12-150-25-XXXX	C12-175-XXXX	C12-225-XXXX	~	S15
P21CC	Plunger, Pin End, Capture Chamber ^{1,2}	P21CC125-XXXX	P21CC150-XXXX	P21CC175-XXXX	P21CC225-XXXX		C31
C13	Cage, Closed Plunger	C13-125-XXXX	C13-150-XXXX	C13-175-XXXX	C13-225-XXXX		
V11	Valve, Ball and Seat	V11-125-XXXX	V11-150-XXXX	V11-175-XXXX	V11-225-XXXX	C94	B12CC
P12H	Plug Hex, Seat Retainer	P12H125-XXXX	P12H150-XXXX	P12H175-XXXX	P12H225-XXXX		
		Station	ary Unit				<u> </u>
A13	Guide, Valve Rod	A13-150-20-XXXX	A13-200-XXXX	A13-200-XXXX	A13-250-XXXX		
C31	Coupling, Extension ³	C31-125-XXXX	C31-150-XXXX	C31-175-XXXX	C31-225-XXXX	P21CC	C31
B12CC	Barrel, Heavy Wall, Capture Chamber ¹	B12CC125-XXXX	B12CC150-XXXX	B12CC175-XXXX	B12CC225-XXXX		C14
C31	Coupling, Extension	C31-125-XXXX	C31-150-XXXX	C31-175-XXXX	C31-225-XXXX	V11	B22
C14	Cage, Closed Barrel	C14-20-XXXX	C14-25-XXXX	C14-25-XXXX	C14-30-XXXX	P12H	Stationary
V11	Valve, Ball and Seat	V11-175-XXXX	V11-225-XXXX	V11-225-XXXX	V11-250-XXXX	Unit	Unit
B22	Bushing, Barrel Cage	B22-20-XXXX	B22-25-XXXX	B22-25-XXXX	B22-30-XXXX	2	
	Stan	dard Seating As	sembly (JHAC P	(ump)			•
S10	API 3-Cup, Type HR ⁴	S10-20-XXXX	S10-25-XXXX	S10-25-XXXX	S10-30-XXXX		521-L
S15	Bushing, Seating Cup	S15-20-XXXX	S15-25-XXXX	S15-25-XXXX	\$15-30-XXXX		
	Seating N	lipple (not show	n or included in	assembly)			•S21-B
N11	Nipple, Seating, Cup ⁵	N11-20-XXXX	N11-25-XXXX	N11-25-XXXX	N11-30-XXXX		
	Optional Seating Assembly (JHAM Pump)						
S21	API Mechanical Top Lock ⁶	S21-20-XXXX	S21-25-XXXX	S21-25-XXXX	S21-30-XXXX	Seati Assen	0
	Seating N	Nipple (not show	n or included in	assembly)			
N14	Nipple, Seating, Mechanical	N14-20-XXXX	N14-25-XXXX	N14-25-XXXX	N14-30-XXXX		

- 2 Add -FF for fit in thousandths of an inch for plunger
- 3 Add -LL for length in inches for coupling extensions
- 4 Add -SSS for cup size for 3-cup seating assembly. S10 contains S11, S12, S13, S14

5 Add -012 for nipple length

6 Add-ASM to part symbol to indicate assembly. ASM contains S21-M, S21-R, S21-L,

Notes

> When a cup hold-down is used, the pump is a type JHAC.

> When a mechanical hold-down is used, the pump is a type JHAM.

> Alternate parts can be found in the catalog section for each component type.

JHB Capture Chamber Pump, Bottom Anchor

Description

The CDI JHB pump is a precision, insert rod type with an API B12 heavy wall barrel and either a cup or mechanical bottom anchor (hold-down). CDI JHB pumps are available in 1-1/4, 1-1/2, 1-3/4 and 2-1/4 inch bore sizes.

The API B12 heavy wall barrel is externally threaded and has an inside diameter tolerance of +0.002/-0.000 inches.

The JHB pump assembly is installed in the well on the end of the sucker rod string and seated in the seating nipple installed in the tubing string at a predetermined depth.

Pump designed to increase the pumping efficiency in high gas - liquid ratio (GLR) wells, eliminating the gas lock and fluid pound. Each stroke, a small amount of fluid is transferred from tubing in the compression chamber of the pump. The same time, an equivalent volume of free gas escapes in the tubing. A proper spacing between the traveling and standing valves maximizes the compression ratio and allows the fluid transfer on each stroke.

ADVANTAGES OF RHB PUMP

Recommended for deep wells

> Pressure due to fluid load in the tubing acts on the O.D. of the barrel and the I.D. of the barrel above the plunger.

> This balanced pressure around the barrel overcomes the disadvantages of a top anchor (hold-down) pump; that is, tensile loading on the barrel during downstroke and potential for the barrel to burst due to internal pressure or fluid pound.

Recommended for low fluid level, gassy wells

➢ Fluid has only to pass through the anchor and standing valve to be in the producing chamber of the pump.

> The capture chamber and the holes in plunger allows an amount of produced fluid to drain in on top of the standing valve. This allows the pump to build enough pressure to overcome hydrostatic tubing pressure on the downstroke, preventing a gas lock situation.

Recommended for wells with scale or gyp

> The JHB pump barrel assembly consists of two barrels which are connected with an extension coupling (capture chamber) and an upper extension coupling. The plunger will stroke out both ends of the barrels.

> This eliminates gyp or scale forming in the barrel which could prevent removal of the plunger from the barrel.

LIMITATIONS OF RHB PUMP

Not recommended for sandy wells

Sand can settle on the bottom anchor between the O.D. of the barrel and the I.D. of the tubing. This can cause the pump to be sanded in which could lead to pulling a "wet string" to remove the pump.

➤ A top seal assembly can be run on top of a bottom anchor pump to eliminate sand settling on the bottom anchor. The top seal assembly is run between the guide and the top of the barrel and seals (or packs off) the annulus between the tubing I.D. and the barrel O.D.

Barrel subject to corrosive attack

➤ Corrosive fluid will be stagnant between the tubing I.D. and the barrel O.D. causing corrosion to attack the outside of the barrel.

 \succ A bottom discharge valve can be installed on the lower end of the barrel. This allows a portion of the produced fluid to be discharged into the annulus between the tubing I.D. and the barrel O.D. This keeps the fluid in motion preventing corrosive attack on the barrel O.D. due to stagnant corrosive fluid. This also aids in keeping sand from settling on the bottom anchor.

Not recommended for intermittent pumping in sandy wells

> When the pump is shut down, sand can settle between the inside of the barrel and the outside of the plunger which could lead to pump sticking.

> When the pump is shut down, the plunger assembly should be at the top of the upstroke. When the pump is turned on, it is easier for the plunger to fall should there be any sand accumulation. If the plunger assembly was at the bottom of the downstroke, the sand accumulation could cause a sticking problem

Tubing erosion opposite top guide

> Fluid flow out of the port of the guide can impinge against the tubing and cause erosion and possible tubing leak or failure.

> Guides having multiple ports directed upward will cause fluid flow up the tubing rather than impinging on the tubing I.D.

Line-up JHB

			Part Sy	mbol			
Component	Description	, ,	Tubing Size and Pump Bore (inches)				
Туре	Description	2-3/8 1-1/4	2-7/8 1-1/2	2-7/8 1-3/4	3-1/2 2-1/4		A13
		Trave	ling Unit				
B21	Bushing, Valve Rod	B21-20-XXXX	B21-25-XXXX	B21-25-XXXX	B21-30-XXXX		C31
R11	Rod, Valve ¹	R11-20-XXXX	R11-25-XXXX	R11-25-XXXX	R11-30-XXXX	B21	
C94	Cage, Open, TPA, W/out Seat Prep	C12-125-XXXX	C12-150-25-XXXX	C12-175-XXXX	C12-225-XXXX		
P21CC	Plunger, Pin End, Capture Chamber	P21CC125-XXXX	P21CC150-XXXX	P21CC175-XXXX	P21CC225-XXXX	R11	B12C0
C13	Cage, Closed Plunger	C13-125-XXXX	C13-150-XXXX	C13-175-XXXX	C13-225-XXXX		
V11	Valve, Ball and Seat	V11-125-XXXX	V11-150-XXXX	V11-175-XXXX	V11-225-XXXX		
P12H	Plug Hex, Seat Retainer	P12H125-XXXX	P12H150-XXXX	P12H175-XXXX	P12H225-XXXX		C31
		Statior	nary Unit			C94	C14
A13	Guide, Valve Rod	A13-150-20-XXXX	A13-200-XXXX	A13-200-XXXX	A13-250-XXXX		
C21	Connector, Barrel	C21-20-XXXX	C21-25-XXXX	C21-25-XXXX	C21-30-XXXX		V 11
C31	Coupling, Extension ³	C31-125-XXXX	C31-150-XXXX	C31-175-XXXX	C31-225-XXXX	P21CC-	S 12
B12CC	Barrel, Heavy Wall, Capture Chamber ¹	B12CC125-XXXX	B12CC150-XXXX	B12CC175-XXXX	B12CC225-XXXX		S13
C31	Coupling, Extension	C31-125-XXXX	C31-150-XXXX	C31-175-XXXX	C31-225-XXXX	C13	S14
C14	Cage, Closed Barrel	C14-20-XXXX	C14-25-XXXX	C14-25-XXXX	C14-30-XXXX	P12H	
V11	Valve, Ball and Seat	V11-175-XXXX	V11-225-XXXX	V11-225-XXXX	V11-250-XXXX	Traveling Unit	Stationary Unit
	Sta	ndard Seating A	ssembly (JHBC P	'ump)		55	
\$10	API 3-Cup, Type HR ⁴	S10-20-XXXX	\$10-25-XXXX	\$10-25-XXXX	\$10-30-XXXX		
\$16	Coupling, Seating Cup	S16-20-XXXX	S16-25-XXXX	\$16-25-XXXX	\$16-30-XXXX		522-R
	Seating	Nipple (not show	n or included in	assembly)			•——S22-М
N11	Nipple, Seating, Cup ⁵	N11-20-XXXX	N11-25-XXXX	N11-25-XXXX	N11-30-XXXX		
	-	tional Seating As	ssembly (JHBM F	'ump)			l.
\$22	API Mechanical BtmLock ⁶	S22-20-XXXX	S22-25-XXXX	S22-25-XXXX	\$22-30-XXXX		V
	Seating	Nipple (not show	n or included in	assembly)		Optio Seati	ing
N12	Nipple, Seating, Mechanical	N12-20-XXXX	N12-25-XXXX	N12-25-XXXX	N12-30-XXXX	Assem	ıbly

 $1 \qquad {\rm Add} \ {\rm -LL} \ {\rm for \ length \ in \ feet \ for \ plunger, \ barrel \ and \ valve \ rod}$

2 Add -FF for fit in thousandths of an inch for plunger

3 Add -LL for length in inches for coupling extensions

4 Add -SSS for cup size for 3-cup seating assembly. S10 contains S11, S12, S13, S14

5 Add -012 for nipple length

6 Add -ASM to part symbol to indicate assembly. ASM contains S22-R, S22-M, S22-B

Notes

> When a cup hold-down is used, the pump is a type JHBC.

> When a mechanical hold-down is used, the pump is a type JHBM.

Alternate parts can be found in the catalog section for each component type.

Negoiesti Office

7 Piatra Craiului St., DIBO, Building #9 Negoiesti, Prahova 107086, Romania

Contact sales person: Maria IPATE Phone: (0040) 730 096 305 E-mail: <u>maria.ipate@endurancelift.com</u> Web site : <u>www.cdi-os.com</u>

CDIOILFIELD SERVICES has produced this catalog for general information only, and it is not intended for design purposes. Although every effort has been made to maintain the accuracy and reliability of its contents, CDI in no way assumes responsibility for liability for any loss, damage or injury resulting from the use of information and data herein. All applications for the material described are at the user's risk and are the user's responsibility.